当前位置:首页 > 教学文档 > 教学计划

高二的数学教学计划

时间:2024-10-19 00:14:33
高二的数学教学计划

高二的数学教学计划

时光飞逝,时间在慢慢推演,我们的工作又进入新的阶段,为了在工作中有更好的成长,是时候抽出时间写写计划了。什么样的计划才是有效的呢?以下是小编精心整理的高二的数学教学计划,仅供参考,大家一起来看看吧。

高二的数学教学计划1

一、教学内容

本学期文科数学内容为苏教版普通高中课程标准实验教科书(必修)3、选修系列1-1两册全部内容,根据情况决定是否上一点系列3的选讲内容。

二、教学指导

1、认真研究和学习新课程数学课程标准的教学要求。通过学习,明确高中数学课程的总目标和具体目标,准确把握每一个知识点的教学难度,切实领会新大纲、新教材的意图,力求恰到好处的教学成效。

2、教学应注意突出新课程理念,要突出新课程的教学六环节,特别是情境创设、问题建构、学生活动,但反对盲目套用,要重视让学生体会、发现知识的发生过程,要注重培养学生数学地提出问题、分析问题和解决问题的能力,发展学生的创新意识和应用意识,要提高数学探究能力、建模能力和交流能力,进一步发展学生的数学实践能力,这也是新课程标准的核心要求。

3、教学要注重基本知识、基本技能、基本方法的掌握,要面向全体学生,绝不能将新授课上成高三的复习课,练习要以课本为主,适当补充难易适中的课外习题,保证学生经过自身努力能基本完成。要体会教材循序渐进、螺旋上升的编写意图,更要领会《标准》和《教学要求》的精神,准确把握好“度”,切忌将选修内容纳入必修课程。

4、教学要注重激发学生学习数学的兴趣,使学生树立学好数学的信心,形成实事求是的科学态度和锲而不舍的钻研精神,认识数学的科学价值和人文价值,从而进一步树立辨证唯物主义的世界观,实实在在地在培养学生数学素养上下功夫。

5、要尽可能在每学期结束按要求完成教学任务,既不要提前,也不要滞后。以便于全区统一调查测试。要准确理解改革以后的高考新导向和08年广东省高考方案,使教学确实具有实效性、针对性和科学性。

6、系列3的课程可以按讲座形式开设,每本书开设一、两次即可,主要是布置任务以学生自学为主,以拓宽学生的知识面为目的。另外,望能结合教学内容,安排适度的阅读、调研、实践等研究性学习活动。

7、月考单独出题。命题原则是面向全体学生,以课本例、习题为主,采用高考试卷模式,适当渗透高考要求,充分保护学生学习数学的积极性。

8、试卷分值、试卷结构、考试时间待定,难度系数为0.60—0.65。

9、培优补差按分部要求安排。在期末对培训内容进行一次质量检测。

三.教研活动

1.充分利用有利条件——课组成员在一个办公室,每天研究讨论第二天的内容,教法。总结当天的得失之处。

2.每周四开本组教研会,集体备课并讨论研究布置下周的教育教学此文转自任务。

3.本学期每人上一堂公开课,计划上交教学处。

4.培优补差任务按轮流负责知识点的方法。培优内容为必修五,补差内容为本学期难点。

5.每个知识点的学案,单元检测,假期作业,各种考试试卷轮流出题,具体安排每周课组会上讨论通过。

6.争取做一个课题,具体内容与安排由科组合议。

高二的数学教学计划2

一.学情分析

高二5班共有学生73人, 8班共有学生70人。两个班级都是高二理科班的三类班,大部分学生基础不扎实,学习兴趣不高,甚至很多学生存在怕数学科的心理。但他们还是存在一颗想学好数学的心,也想融入变化多端的数学世界,更想在每次考试中独领风骚,鉴于此,对他们正确引导,教学中适当调整难度,起点放低点,步子迈小点,还是会有好成绩的。

二.教学计划

1.加强自身学习。

①加强课本的研读。教科书是一切教学的出发点,同时也是考试的归属地,任何一个数学知识点都会从教科书中找到类型题或者相似题或者其影子。对教科书能否吃透,专研到位,直接决定着教学知识的全面性和系统性。也就决定着研读教材的必要性。

②他山之石,可以攻玉。一个人由于生活的环境,面对的对象,自身知识局限等多方面原因,视野和出发点都有局限,思考问题和解决问题的广度和深度都有局限,因此,多阅读教学参考类的书,吸取他人的经验,借鉴他人所长弥补自己所短,对于增强教学的针对性和精彩性大有裨益。

③强化课改意识。新课改已经全面铺开,新课改的精神和思想都独具时代性,前瞻性,科学性,因此,加强新课改知识的学习,领悟新课改思想,增强新课改意识,是时代的需要,是发展的需要。因此,积极参与新课改培训,领会新课改精髓,并应用于实践中是当前必须要做的,只有这样,才能使自己的知识新陈代谢。

④认真参与组内备课。珍惜每周一次的集体备课,充分利用好这次集体备课机会,从同行们那里学习到自己缺乏或者不擅长的东西,并积极实施好组内的各项安排,落实好课时要求。

⑤增强听课的意识。按照学校的要求,积极参加新课改年级的课堂听课活动,听取授课教师的点评,发现亮点,记录亮点,积累亮点,点亮亮点。

2.抓好课堂教学的主战场,激发师生学习数学热情。

①加强新课情景创设,激发学生学习热情。每一节新课的开展,都有其现实意义,有其价值所在,有其趣味性,充分挖掘好这方面知识,可起到一个良好的开端作用。

②精选精讲例题。对于学生自己学得会的,不讲,对于学生讨论后可以解决的,给以适当点拨,对于学生在老师引导下完成的,要慢慢讲,细细的讲,争取每个学生都听得进,听得懂,学得会。对于超越学生承受能力的,一概不讲。

③精心布置课后作业。课后作业是课堂教学的反馈,作业质量的高低,一定层面可以反映教学效果的高低,因此,作业的布置需要科学化,分层化,多样化,且知识点具有全面性。

3.做好课后辅导工作。

①利用晚自习是时间,充分给以每个学生耐心、细心、全面的辅导。让学生积累的问题得到彻底解决。

②利用自习课的时间,寻找需要帮助的学生进行辅导,公式背不出来的,抓背公式,不交作业的,责令补交作业。

4.做好作业、考试反馈工作。

学生认真完成作业和考卷,老师进行批改,总结共性问题,发现个性问题,有针对性的给以反馈,及时消除困惑。

5.规范作答,养成良好习惯。

现在学生的数学答卷,条理不清晰,逻辑混乱,因果颠倒,这是基础不扎实的表现,更是一种思维的缺陷。因此,现阶段抓好规范答题,有助于学生良好数学思维的养成,避免将来高考失分和日后生活的凌乱。

6.培养学生的数学兴趣,普及数学价值规律的应用。

兴趣是学生最好的老师。数学难,数学烦,难在何处,烦在何方?找到原因,对症下药,通过课堂,移植中外数学趣味知识 ……此处隐藏19176个字……的语言来描述几何图形,例如“点”可以用“数对”表示,“曲线”可以用“方程”表示等;第二,把几何问题转化为代数问题,例如,“两直线平行”可以转化为“两直线方程组成的方程组无解”等;第三,实施代数运算,求解代数问题;第四,将代数解转化为几何结论。随着数学本身的发展,出现了代数数论、代数几何等的数学分支,而拓扑学、泛函等代数工具都可以作为研究心得曲线和曲面的工具,这些都是“解析几何思想”的发展个推广。解析几何初步的重点是帮助学生理解解析几何的基本思想,即把代数作为一种工具和手段来研究几何问题。

3。“坐标系”是解析几何思想的主要组成部分,因为建立了坐标系,就能把曲线和曲面的性质用代数来表示,从而把几何问题转化为代数问题来解决。适当地选择坐标系可以大大简化对图形性质的研究,但图形的性质不会竖着坐标系的变化而改变。我们要研究的正是那些和坐标系的选择无关的性质;或者说建立坐标系正是为了摆脱图形对坐标系的依赖,这在对数上就表现为某个线性变换群下的不变量和不变关系。

4。圆锥曲线是我们生活中最基本的图形。①圆锥曲线(面)可以帮助我们刻画一些基本的运动。例如,太阳系中,八大行星的运动轨迹都是椭圆。②光学性质和圆锥曲线是密不可分的,基本的光学性质都是由圆锥曲线体现出来的。例如,探照灯就是利用抛物面的光学性质制作而成的,它可以将点光源发出的光折射成平行光,照射到足够远的地方。几乎所有的光学仪器都是依照圆锥曲线(面)的性质制成的。③研究圆锥曲线(面)的性质时体现解析几何本质的最好载体,即便是在大学数学系的学习中,如何利用方程的系数确定二次曲线的形状,揭示其规律也是数学的经典内容。

  教育分析

1。有助于学生数形结合思想的培养。

解析几何的本质是用代数的方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。

2。是培养学生运算能力的重要载体。

运算思想是数学中最重要的思想之一。解析几何的运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的几何结论,这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。

  课标解读

1。整体定位

“解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。

“解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。

2。具体要求

(1)直线与方程

①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

③能根据斜率判定两条直线平行或垂直;

④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

⑤能用解方程组的方法求两直线的交点坐标;

⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

(2)圆与方程

①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;

②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;

③能用直线和圆的方程解决一些简单的问题。

(3)在平面“解析几何初步”的学习过程中,体会用代数方法处理几何问题的思想。

(4)空间直角坐标系

①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;

②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的理解不能要求一步到位。

3。课标解读

(1)要注重知识的发生与发展的过程

解析几何初步的教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。

数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。

比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。

(2)在高中阶段,直线的斜率一般一般有三种表示方式

①用倾斜角的正切

这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。

这需要先引入0°到180°的正切函数的概念。

②用向量

  内容结构

1。知识内容

2。 章节安排

本章教学时间约需18课时,具体分配如下:

1 直线与直线的方程 8课时

2 圆与圆的方程 5课时

3 空间直角坐标系 3课时

《高二的数学教学计划.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式