当前位置:首页 > 教学文档 > 说课稿

倒数说课稿

时间:2024-10-18 17:39:33
倒数说课稿

倒数说课稿

作为一名辛苦耕耘的教育工作者,往往需要进行说课稿编写工作,通过说课稿可以很好地改正讲课缺点。那么你有了解过说课稿吗?以下是小编收集整理的倒数说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

倒数说课稿1

今天我将要为大家讲的课题是“倒数的认识”。

一、说教材

倒数的认识在西师版九年义务教育六年制数学教材第十一册第45—47页,这部分内容是在分数乘法计算的基础上进行教学的。倒数主要是为后面学习分数除法做准备的,因为一个数除以一个分数的计算方法是归结为乘上这个分数的倒数。所以说倒数的认识是小学数学重要的内容之一。作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生展示尝试观察、归纳、类推、联想等数学思想方法。

二、教学目标:

根据上述教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,我制定如下教学目标:

1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义。

2、让学生经历提出问题、探索问题、应用知识的过程,自主总结出求倒数的方法。

3、通过合作活动培养学生学会与人合作,愿与人交流的习惯。

4、通过学生自行实施实践方案,培养学生自主学习和发展创新的意识。

三、教学重点、难点:

本着课程标准,在吃透教材基础上,我觉得首先必须掌握倒数的意义与求法,其次1、0的倒数,以及小数、带分数倒数的求法,所以我认为倒数的意义及其倒数的求法是教学的重点。乘积是1的两个数互为倒数。这里要强调倒数是对两个数来说的,它们是相互依存的,必须说一个数是另一个数的倒数,不能孤立地说某一个数是倒数。所以我认为正确理解倒数的意义是教学的难点。教学的关键就是教会学生克服难点,办法是结合课本中的例子说明,然后可以让学生举出几组倒数,并对学生的回答让学生们发表意见,用倒数的意义来检验所举的例子对不对。下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈一谈:

四、 说教法:

数学是一门培养和发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与尝试教学的教学原则,我进行了这样的教法设计:在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法,使之获得内心感受。

五、学法:

课程改革的具体目标之一是“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。我以建构主义理论为指导,辅以多媒体手段,采用着重于学生探索研究的尝试教学方法,结合师生共同讨论、归纳。在课堂结构上,我根据学生的认知水平,我设计了如下几个层次: ①创设情境——引入概念②观察归纳——形成概念③讨论研究——深化概念④即时训练—巩固新知⑤总结反思——提高认识⑥任务后延——自主探究六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。

六、教学资源

为了充分利用远程教育资源提高自身的教育教学水平,提高教育质量,增强教育的趣味性,让受教育者由被动学习变成主动学习,本课件在制作过程中选用了四川基础教育网上的部分内容并加以整合利用

接下来,我再具体谈一谈这堂课的教学过程:

七、教学程序及设想:

(一) 创设情境——引入概念

我经常在思考:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。在这里我由生活中的具体的实例引入:生活中哪些物体可以倒过来?同学们可以相互交流得出多种答案

a、人倒立 b、杯子 c、凳子 d、分数

这样符合小学生喜欢探究新奇奥妙事物的特点,有利于激发学生的学习兴趣。

(二)观察归纳——形成概念

仔细观察这4组数字,除了形上有倒的现象外,每两个分数之间还存在什么特征?教师引导学生概括总结出本课新的知识点:每两个分数相乘的积是1,在此基础上引出倒数的概念,重点理解乘积是1的两个数互为倒数。在这里老师强调“互为”说明成为倒数的两个数之间是相互依存的,即表述倒数时,必须说明一个数是另一个数的倒数,或者说一个数和另一个数互为倒数。

(三)讨论研究——深化概念

① 找倒数(这里指的是分数),引导学生考虑怎么找的?有什么规律?教师引导学生概括总结出本课新的知识点:求一个数的倒数,只要把这个数的分子、分母调换位置。方法如下: 分母是8,分子是15,求它的倒数就是把他的分子和分母调换位置,也就是

②整数(这里指的是大于1的自然数),这样的数怎么办?教师引导学生概括总结:整数可以看成分母是1的分数,它们的倒数也是只要把这个数的分子、分母调换位置。

③ 1有没有倒数?如果有,它的倒数是多少?引导学生概括总结:1有倒数,1的倒数就是它本身,因为1等于一分之一,一分之一分母、分子调换位置还是一分之一,就是1。

④0有没有倒数?学生起争议,0不能作分母,0不能作除数,任何一个数和0相乘的积都不会是1,所以0没有倒数。

⑤ 充实规律,加深规律。非0自然数的倒数和0没有倒数是学生容易混淆出错的地方,也是学生认识的误区。

(四)即时训练—巩固新知

为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,在这组练习题中除了有整数、分数以外还有小数,以及带分数的求倒,可以让学生通过观察尝试,讨论研究,教师引导来巩固新知识。

(五)总结反思——提高认识

由学生总结本节课所学习的主要内容:⑴倒数的意义;⑵倒数的求法;⑶非0自然数,以及小数、带分数的倒数⑷ 0的倒数。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

(六)任务后延——自主探究

学生经过以上五个环节的学习,已经初步掌握了探究倒数规律的一般方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,留给学生 ……此处隐藏21872个字……行教学设计:

一、课前谈话,渗透互为

在课的一开始,我抓住“互为”二字作文章,在谈话中让学生理解“互相”应该是双方面的,这样学生对马上接触到的“互为倒数”就比较容易理解了。接下来问同学人与人之间有着相互的关系,那么在我们数学中数与数之间是否也有着相互关系,通过回忆因数和倍数的关系,比较自然的过渡到新课的学习中,渗透“互为”这个倒数概念中的关键词语,帮助学生理解“互为”的含义,从而为建构新知扫清语言理解障碍,并为学习新课做了很好的铺垫。

接下来,我直接出示“倒数”一词,先让学生从字面猜测它的意思,勾起学生对倒数的兴趣,让学生对“倒数”主动产生疑问,激发学生解决问题的欲望。

二、自学尝试,理解意义

1、课件出示口算题,在请学生抢答后发现相同点:得数是1,然后再通过分类、猜一猜,发现积为1的两个数有一定的特殊性。充分让学生自学,从而给学生一定的时间去自己发现问题、讨论问题、解决问题。让学生带着问题去思考,带着问题去自学。然后让学生按照“读、思、划”三步认真阅读课本,即一边读书P50,一边思考,并把重点知识或不明白的地方勾画出来。

结合例子说明:3/8和8/3互为倒数,也就是说3/8的倒数是8/3,8/3的倒数是3/8。

2、请学生举例说出互为倒数的两个数,并说理由,充分感知。从而通过比较,得出求一个分数的倒数的方法。

3、抢答题中特意设计了几分之一的倒数是几,引导学生发现整数的倒数。再通过学生一问一答的形式,既自主得出了求一个整数的倒数的方法,又解决了整数中的特殊情况,1和0的倒数的问题。突出了本课的重点。

4、通过寻找字母a和b/a的倒数,让学生学会求含有字母的数的倒数的方法。巩固的0没有倒数的特点。

5、在练习题第二题的设计中,我特意放入了1/6和5/6,0,0.25.让学生再次明确了互为倒数的两个数的条件是乘积为1,小数也有倒数,0没有倒数。

6、第三题找规律是本课的难点,学生已经会求一个数的倒数,但是很难用完整严谨的语言来表达规律。因此我采用小组讨论,再全班讨论的方式,让学生一步步补充、完善,最终得到结论。

7、小结时,又把学生带回到之前他们提出的问题中,让学生根据自己本节课所学到的知识自己回答问题。前后呼应,完全体现学生为主体的特点。

8、课的结尾,我加入了一个对联,让学生体会语文中的“倒数“,感受生活中的有趣现象,激起学生的兴趣。

整堂课,我努力以学生自学为主,不断提供他们讨论,探究的机会,让学生充满兴趣的掌握本课的重、难点。当然,还有很多不足之处,比如练习题的形式过于单一等,希望各位老师批评指教。

倒数说课稿15

今天我们继续来学习第三单元分数乘法的最后一课大家一起来齐读课题(倒数)

我们从小就与各种各样的数打交道,关于倒数这个名称听起来很有意思。那么关于倒数你有哪些想知道的问题呢?(学生回答)

同学们提的问题都很好,那么这节课就让我们一起来揭开倒数的神秘面纱。(板书课题)

首先我们一起来看这几个算式。不着急做,想要从算式背后挖掘更多的信息,先来看活动要求。

认真计算各题,再去想一想你发现了什么呢?我们开始算一算吧。

我看大家都已经很快的算好了,我们一起来对对答案吧。

看来同学们写的都很棒,那么通过这些算式你发现了什么呢?(算式都等于1)

这些等于1的算式都有什么特点呢?小组内讨论一下吧

同学们观察的可真仔细,老师要为你们的积极动脑思考点个赞。在数学中乘积为1的两个数互为倒数。互为倒数的两个数可以式分数、整数或小数,只要它们的乘积是1.这两个数就互为倒数。

现在我们知道什么是倒数了,刚才还有同学问了倒数是一类数吗?很显然不是。同学们有没有发现倒数其实和我们之前学过的倍数和因数很相似,它们表示的都是两个数之间的一种关系。比如……

接下来我们再来研究新的问题。老师这里有一个长方形的纸。如果它的面积是1,我们知道其中的一条边,你会求另一条边的长度吗?这个表格你会填吗?

在填表格之前我们先想一下,要求另一条边的长,实际在求什么呢?我们一起填一填吧。小组内可以讨论交流一下。

请同学来汇报一下你是怎样填的呢

看来同学们写的都很不错,2和0.4这一题你还有其他答案吗?

整数和小数我们在求倒数的时候除了把它改成分数来求倒数之外,还可以用1除以这个数来求它的倒数。

说到这里可能有同学在思考一个问题,是不是可以用1除以一个分数来求它的倒数呢?其实也是可以的,我们会在后面的学习中来证实我们的猜想。

现在表格已经填完了,大家觉得还有什么特别的发现吗?对了,我们发现1的倒数就是它本身。

现在我们来回顾总结一下怎样求一个数的倒数呢。如果是求一个分数的倒数,那我们可以把这个的分数的分子分母互换位置,是带分数的可以先化成假分数再互换。如果是求一个小数的倒数,可以先把小数化成分数互换分子分母的位置。如果是求整数的倒数,那么整数n的倒数就是n分之一。别忘了1的倒数是它本身。其实不管是哪一种数,我们都可以用1除以这个数来求出它的倒数。我们可以根据数的特点,灵活的选择最合适的方法。

下面老师把刚才表格里的几个长方形都画来了出来,现在你能结合着图形,再看这些互为倒数的数,谈一谈你有什么发现吗?

同学们说的都很好,通过观察长图形,我们发现长方形的一条边如果比1大,那么另一条边就比1小,也就是说如果互为倒数的两个数,其中一个比1大,另一个倒数就比1小。长方形的一条边越来越长,那另一条边就越来越短。也就是互为倒数的两个数其中一个数越来越大,那么另一个数就会越来越小。

请同学们想象一下,如果其中一个数变得非常大,那么它的倒数就会越来越接近什么呢?那会不会有一个数它的倒数就是0呢?0有没有倒数呢?请同学们在小组内讨论一下。

求一个数的倒数可以用1除以这个数,但是0不能做除数,所以0没有倒数。如果面积是1的长方形的一条边是0了,那么也不能成为一个长方形了。同学们回答的都很棒。

我们快点把这个结论补充到里面吧。

现在我们已经知道什么是倒数了,也知道怎样求一个数的倒数了,接下来我们通过几道练习题来检验一下吧。

刚才有同学在解方程的时候,发现了一个很有意思的事情。他说按照我们原来解方程的办法,我们在求解的时候,可以用积除以另一个乘数,也就是1除以三分之二,虽然我们没有学过分数除法,但是我们用倒数的知识也很快的得出了答案。是不是很神奇。倒数是不是真的和分数除法有关系呢?相信通过今后的学习你会对这个问题有更清楚的了解。

本节课的最后,我们来交流一下,通过学习,你有哪些收获呢?

同学们说的都很不错,我们这节课围绕着什么是倒数,怎样求一个数的倒数展开了非常充实的讨论,而且我们也发现了很多特别有意思的问题和规律,相信大家都很有收获。本节课就上到这里,下课。

《倒数说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式